

Modeling and Developing Competences Integrated IRT-Based and Qualitative Studies with a Focus on **Mathematics and its Usage in Engineering Education**

Subprojects A/B Subproject A: Leibniz Universität Hannover/ Universität Paderborn Subproject B: TU Dortmund University / Humboldt-Universität zu Berlin

Qualitative and Quantitative Studies on Task and Process Analyses Technical-Cognitive, Metacognitive, Learning Culture and Communities of Practice Subproject C University of **Stuttgart** IPN – Leibniz-Institute for Science and Mathematics Education, Kiel

IRT-Based Modeling of Competence Structures in Basic Engineering Studies, Proficiency Scaling and Modeling of Competence Development

Applying an Extended Praxeological ATD-Model for Analyzing Different **Mathematical Discourses in Higher Engineering Courses** (Subproject A – Hannover, Jana Peters, Reinhard Hochmuth, Stephan Schreiber)

Situation

Analytical Tool: Extended Praxeological ATD-Model

- Engineering students face Mathematics in the contexts:
- Higher mathematics courses (HM)
- Advanced engineering courses, Signals and System Theory (SST)

Problem

Mathematical discourse in SST-courses:

- Includes HM-practices
- Combines HM practices with electrotechnical rationales
- Constructs new mathematical practices (specific electrotechnical) reasoning patterns)

Focus

A SST-exercise and the sample solution given by the lecturer

Research Question

What praxeologies arise in the sample solutions and how are the different established mathematical concepts related?

 $T^{*}, \frac{\tau_{HM}}{\tau_{SCT}^{*}}, \frac{\theta_{HM}}{\theta_{SCT}^{*}}, \Theta_{SST}^{*}$

Universität Stuttgar

BWT 🕷

- \succ Based on the 4T-model $[T, \tau, \theta, \Theta]$ in Anthropological Theory of Didactics (ATD, Chevallard, 1992, 1999)
 - task (applicable to every human activity)
 - techniques to solve the task • τ
 - technologies, explaining and justifying the techniques
 - theory justifying the technologies • •
- > Two branches
 - HM-branch: math. concepts established in the HM-courses
 - SST-branch: motivated, explained or justified by electrotechnical or physical reasoning
- * Didactic transposition process (Chevallard, 1991; Castela, 2015), indicates focus on course materials from higher engineering courses

Praxeological Analysis of a Sample Solution to a SST-Problem and Discussion

The exercise is given as follows (see handout for the sample solution):

Assuming 0 < m < 1, thus A(t) > 0, (the envelope of an AM-signal is always positive), show that the above-mentioned envelope detector actually delivers a signal proportional to A(t).

SL

- > The structure of the solution and the result of the praxeological analysis are shown in the graph:
 - Complex techniques become subtasks on the next level
 - Application of the extended prax. model to each level
 - Different colors for HM- and SST-branch
 - The extended praxeological model is in principle capable of discriminating different discourses

> Remarks

- Taking the absolute value is classified as SSTtechnique because of electrotechnical reasoning
- Ambitious HM-techniques in level 5 involves manipulation of infinite sums due to symmetry arguments
- Full Fourier series expansion of the signal is not necessary to solve the task (level 4 and 5)
- With electrotechnical reasoning: calculating the first coefficient would be sufficient because of application of low pass filter (involves only simple integral techniques)

> Hypotheses

(Н	И-	b	ra	n	cł	h
			~	· · ·		<u> </u>	1

	$\theta_{\rm HM}$: [cos] is periodic and continuous	
	facettes of theory: HM, Fourier series	
ıbtask		
	► T ₅ [*] : Fourier series expansion of cos	
	τHM: ambitious mathematical techniques θHM: HM-technologies	
	facettes of theory: HM, Fourier series	

- Students can solve exercises more effectively and efficiently if they keep electrotechnical reasoning patterns and justifications in mind.
- Being able to recognize the different mathematical discourses in SST-courses enables students to determine effective solution steps.

The subproject is part of the KoKoHs research cluster KoM@ING and is sponsored by the BMBF (FKZ 01PK11021D) from May 2012 until July 2015.

Project Management TU Dortmund Prof. Dr. Uwe Wilkesmann, zhb Prof. Dr. Dr. h.c. Johannes Wildt (ret.)

Project Partners

Leibniz Universität Hannover

Prof. Dr. Reinhard Hochmuth, IDMP, khdm

Universität Paderborn Prof. Dr. Rolf Biehler, IfM, khdm, Prof. Dr. Niclas Schaper, IHW, khdm **Project Coordination TU Dortmund** Matthias Heiner, zhb

Project Management Agency

SPONSORED BY THE

Federal Ministry of Education and Research

TU Dortmund Prof. Dr. Dr. h.c. A. Erman Tekkaya, IUL, TeachING-LearnING.EU

Humboldt Universität zu Berlin Prof. Dr. Bettina Rösken-Winter, PSE, Dept. of Mathematics **IPN -** Leibniz Institute for Science and Mathematics Education Kiel Prof. Dr. Aiso Heinze, Dept. of Mathematics Education

University of Stuttgart

Prof. Dr. Reinhold Nickolaus, Insitute of Education (IfE), Dept. of Vocational, Economic and Technical Education (BWT)